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Abstract—A numerical study of the effects of transients and variable properties on single droplet
evaporation into an infinite stagnant gas is presented. Sample calculations are reported for octane droplets,
initially at 300°K with R, = 0-1, 0-5, 2:5 x 10™*m, evaporating into air at temperatures and pressures
in the ranges 600-2000°K and 1-10 atm, respectively. It is found that initial size R, is eliminated from
the problem on scaling time with respect to R3 and that the evaporative process becomes quasi-steady
with (R/R,)* = (R%/R,)* — Bt/R3, as suggested by experiment. Comparisons of solutions using various
reference property schemes with those for variable properties show that best agreement obtains using
a simple 1/3 rule wherein properties are evaluated at T, = T, +(T,— T,)/3 and m, , = m; (+ (m; . —my ;)/3.
The effects of temporal storage of mass species, energy, etc. and radial pressure variations in the vapor
phase prove to be negligible, the early transient behavior being solely due to sensible heat effects within
the droplet and related variations in vapor-side driving forces.

NOMENCLATURE

B, vapor-side driving force;
C,, specific heat [J/kg°K];

9.1, Dbinary diffusion coefficient [m?/s];
h;,, latent heat [J/kg];

k, thermal conductivity [w/m °K];
m, mass fraction;

", mass flux [kg/m?s];

M, molecular weight;

P, pressure

[atm, N/m?; 1 atm = 1-013 x 10° N/m?];
Pr,  Prandtl number;
r radial coordinate [m];
R, droplet radius [m];
R¥, intercept at ¢ = 0 for quasi-steady curve;

X, universal gas constant {atm m3/kg-mole °’K];
Sc¢,  Schmidt number;

L time [s];

T, temperature [°’K];

v, radial velocity [m/s].

Greek symbols

o thermal diffusivity [m?/s];
B, negative of slope for (R/Ro)? vs t/R3 [m?/s];
A, measure of difference in radii or specific heats;

n viscosity [Ns/m?];
0, density [kg/m3].

Subscripts
0, att=0;
1, of evaporating species;
2, of air;
e, r— 00;
h, for heat transfer;

*Computer time for the numerical calculations was
supplied by the Campus Computing Network of the Univer-
sity of California, Los Angeles.

i, ith node point;

1, of liquid;

m, for mass transfer;

: in the radial direction; also, at reference

conditions;

s, atr=R+;

u, atr=R—.

Superscripts
0, at the previous iterate;
+, dimensionless.
INTRODUCTION

DROPLET evaporation is of importance in, for example,
process operations, liquid hydrocarbon combustion,
and meteorology. Evaporation of a single isolated
liquid droplet into an infinite stagnant gas has long
been a subject of study; recent reviews of this activity
have been given by Kent [1] and Williams [2].
Engineering calculations are usually based on results
of constant property quasi-steady theory which show
that the droplet diameter squared decreases linearly
with time, a result confirmed by experiment for all but
the initial stages of droplet life. Two aspects of this
theory which have received considerable attention are
(i) validity of the quasi-steady assumption and (ii)
accounting for variable transport properties in predict-
ing the proportionality constant § in (R/Ry)? =
(R%/R,)* — Bt/RE. However, neither aspect has as yet
been satisfactorily resolved.

The most complete study of the transient problem
was that of Kotake and Okazaki [3], who numerically
integrated the governing time dependent conservation
equations. Their results are often quoted when the
quasi-steady assumption is evaluated, e.g. [2,4], and
although serious discrepancies with experiment have
been noted, no one has suggested the possibility that
the Kotake and Okazaki numerical solution pro-
cedures were in error. Examples of the discrepancies
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with experiment are: (1) plots of R? vs t do not show
the quasi-steady constant f§ regime, but rather a con-
tinuous and marked decrease in S, and (2) the
accompanying solutions of the related droplet com-
bustion problem predict flame temperatures much
lower than measured values. New numerical solutions
of the transient problem are required to evaluate the
work of Kotake and Okazaki.

Early attempts to account for variable transport
properties in the prediction of § were based on ad hoc
assumptions and comparisons with experiment; many
such attempts were also made for the related droplet
combustion problem. Recently, Kent [1] carried out
extensive calculations for quasi-steady evaporation
with variable properties. A limited attempt was made
to determine a simple reference state for evaluation of
properties in the corresponding constant property
solution; however, Kent chose to correlate his results
to high accuracy with specialized complex algebraic
formulae. Thus, there is definite merit in ascertaining
whether simpler, or more general, reference state
schemes, e.g. as proposed by Knuth [ 5], are of adequate
accuracy for the engineering calculation of droplet
evaporation rates.

In the present study we have numerically integrated
the mass, species and energy conservation equations
governing droplet evaporation, both for variable
properties and for properties using various reference
state schemes. We shall show that the results reported
by Kotake and Okazaki are erroneous and must be
discounted. We will also make recommendations con-
cerning a suitable reference state for use in transient
and quasi-steady constant property solutions.

ANALYSIS

Governing equations

A spherical droplet of pure liquid, initially at tem-
temperature T, and radius R, is suddenly subjected
to surrounding gas at uniform temperature 7,. The
only convective motion considered is that induced by
the evaporation process itself, giving rise to a radial
convective velocity in the vapor (species 1) and gas
(species 2) mixture. The governing conservation equa-
tions are:

1. Liquid phase, r < R(¢)

(A) Energy
orT 1 6(,0T
— =5 —|rr—. 1
a e 6r(r ar> @
2. Vapor phase, r > R(t)
(A) Mass
op L é, ,
(B) Momentum
ov, + ov, 1 ¢/4 2 dv,
v =——|zu’—
ot Tor  prior el
8uv, 4v,0u 10P
e = 0
3pr* 3prdr p or
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(©) Species,

om, om, 1 ¢/{u zﬁml

Bl e 4

TR~ or’ 6r<Sc ar @
(D) Energy,

6T+U or 19 ,0T guar
ot "ar  priér Prr ) C, or
om; ScC,
C . (5
x[( Pt )5r+Pr or] ©)

The boundary conditions and constants are:
1. Liquid phase,at r =0

oT
—=0. 6
P (6)

2. Vapor phase, as r — o
m—-0, T->T,; v,-0; P->P,. (7

3. At the interface, r = R,

v, = rh”(% — —1~> 8)
14

(I—my it = —p@ ”;”‘ 9)
ros
T=T, (10)
k%f— = k%—f— +1i'hy, (11)
k.~ (12)
de 17
My e =my (P, T)). (13)

In addition, there is an equation of state; assuming
ideal gas mixtures, P = pZ#T/M. Initial conditions for
the problem are, in a practical sense, somewhat
arbitrary. The approach adopted here is discussed
below along with other numerical procedures. Addi-
tional assumptions include (i) constant liquid phase
properties, (ii) no second order diffusion effects, and
(iii) thermodynamic equilibrium at the interface.
Furthermore, the variable property calculations showed
that P deviated from P, by less than 0-3 per cent; thus,
P = P, was assumed for the reference property analysis,
making equation (3) irrelevant.

Numerical solution procedure
To effect an efficient solution algorithm for the prob-
lem, the spatial coordinate was first rescaled as follows

P = @R = 1)e'~1) = (=T, r <R
prE = e TRIR _ | gm0 -R) p > R(p)
giving
oT fi m"dT 9y’
—_—t 14
& TRT p, or R flar* f3 (14)
for r* <1 and
Oy 09,
En +5*F1<v +F, )6 -
3**F, 0 o,

= sz P **( F, le"d,na **>+S¢ (15)—(18)
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for r** > 0, where f; = nlnn, f, =n/lnn)*, fs =n(lnn)?, F; =1—r** F,=1-6""InF, and for ¢, =T, m,,
p, and v,, respectively,
Ty, S,
Pr1 (6*2F2,,/C,)(@T /or**)(AC,dm, [or** + ScPr~13C,/ar**)
S¢7! 0
0 — (0*F, p/F)a(F2v,)/0r**

4/3  —(8uv,/3pF5R?) —

Equations (14)—(16) were then approximated numeri-
cally, using three-point central difference expressions
for spatial derivatives and backward difference ex-
pressions for temporal derivatives. In advancing the
numerical solution from one time-step to the next,
iteration was required to enforce strict conservation
of mass and energy across the vapor-liquid interface.
An iterative scheme was devised for which strong
coupling between m", m, (T), and T; at the interface
was treated by linearizing equations (9) and (13) about
previous iterates

0 *
on .,,oml,s—mx,s_P-@ué omy 19
e, (1—m) o, (19)
C M,~M
ml,s = mtl).s +(T—olz_ m?,s<1 - '_17'—2_'"(1’,3>
’ X (LT, (0)

where m{ ; is extracted from equation (13) in terms of
the previous iterate T.°, and advancing the spatial
distributions for T and m,

T=AT. +BT_+C; i=12,..Mi#N) (21)
my;=Dim; ;  +Em;_+F; i=N+1,...M (22)

together with algebraic representations of equations
(11), (14)—(16), and (19)—(20) at the interface

Tv=aly  +bTy_y+omy y+dmy iy +e (23)
myy= fIy+g (24)
simultaneously by means of successive substitution:
T, = AfT1+Bfmy ;4 +CF
my;=D¥my ; +EFT . +CF, 1=M,M—-1,...N
T=AT . +Cf, i=N—-1,N-2,... 1

With T; and m, ; known, the associated p; distiibution
was calculated and the v, ; distribution extracted from
equation (17) by trapezoidal integration, applying
equation (8) to obtain v, .

The above iterative procedure was continued until
[1—m"%/m"| < 10~ . Then, equation (18) was integrated
from r** =1 to r** =0 to extract the Ps, and the
variable thermophysical properties, droplet radius, and
§;, for the energy equation were updated.

In all cases, the initial conditions were treated by
constructing reasonable polynomial distributions for
temperature and mass species, assigning T.-o = 300°K,
T, = 320°K, and self-consistent fluxes at the vapor-
liquid interface. From selected numerical experiments
in which isothermal liquid-side temperature distri-
butions were assigned as T(r*) = 300°K vs 320°K, it
is concluded that the initial conditions affect the results
reported below by at most 3 per cent. For a typical

(6*F, /p)[(@v,/3F ;R)B1/0r** + OPor**).

case coded in FORTRAN-H for the IBM 360/91
computer, ~30s of CPU time were required with
Ar* = Ar** = 00125 and At = t|o.45r,/300. Based on
selected trials at various Ar*, Ar**, and At, the numeri-
cal solutions are judged to be in error by no more
than 2 per cent.

Thermophysical properties

Liquid phase properties of n-octane were obtained
from various sources with p, taken as 703-6kg/m3,
C,; = 2420J/kgdeg, and k; = 0-116 W/mdeg. For the
gas phase properties, molecular weights of 11423 and
29-87 were used for n-octane and air, respectively.
n-Octane vapor pressure was calculated from Py =
exp(—4140°K/T +10-3864) atm., and the heat of
vaporization from h, = 2977 x 10° —2:6913 x 10*( —
5-5287 x 103(* —858-3¢% J/kg, where { = In Pyy. Pure
species gas phase transport properties were calculated
from the Chapman-Enskogkinetic theory of gases with
Lennard-Jones collision parameters of ¢, = 7-407 A,
£1/k = 333°K for octane, and 0, = 36174, &, /k = 97°K
for air. The Mason and Monchik mixture rule was
used for viscosity [6] and the Wilke rule for thermal
conductivity [ 7]. Species heat capacities were obtained
from [8], and mixture thermodynamic properties
calculated assuming an ideal gas mixture,

Reference states

The prescriptions for the various reference state
schemes used to evaluate properties in the reference
property solutions are as follows. In each case the values
of the properties are updated at each time-step of the
solution. We note that these are not constant property
solutions inasmuch as dp/dt # 0.

(A) Knuth[5]. This scheme, as it applies to the drop-
let evaporation problem, is based on an approximate
solution of the variable property stagnant film model
assuming constant energy and mass exchange co-
efficients (k/C, and p9, respectively).

7;— 7; Cpl Cpl pr
= T,
T; 2 12 (-@hr Cp, + gmr Cp, (T )
My MM
¥ My— M, In(M,/m;y M)
Q _ ’h” ) g _ m"
" k/RC," ™ 1/Rp,Zy,,

(B) A 1/3 rule. It is well established for convective
heat transfer, e.g. Sparrow and Gregg [9], that superior
correlations are obtained when the reference tem-
perature is evaluated closer to the wall than the mean
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film value. Extending this concept to the simultaneous
heat- and mass-transfer problem under consideration
here,
T=T+13(1-T)
my, =my o+ 1/30my —my ) =2/3my ;.

(C) Law and Williams [10]. This is an empirical
scheme developed to give good agreement with alkane
droplet burning rates and quasi-steady theory.

T.=T+0XT.-T)
k, = 04k, (T;) + 06k,(T,)

Cpr = pl(Tr); QIZr = @12(1;)5 pr= —C;r—‘@';
RESULTS AND DISCUSSION

Table 1 lists the cases calculated together with the
times required for evaporation to 0-45R, (about 90
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values prevail while the droplet is absorbing sensible
heat; while, the quasi-steady asymptotic value obtains
when the droplet is isothermal at the wet-bulb tem-
perature. To confirm that the unsteady behavior is
due essentially to the liquid phase temperature tran-
sient, selected calculations were made wherein the gas
phase time derivatives were deleted; in no case were
deviations in m” greater than 1 per cent. Figure 1 also
shows that the cases chosen for study cover a wide
range of quasi-steady f values.

Figure 2 is reproduced from Kotake and Okazaki
[3] and gives the results of their calculations for methyl-
alcohol droplets of initial radius 0-001 m. These authors
also obtained results for n-octane but present data
only for T, = 300°C; however, that data is qualitatively
very similar to the data in Fig. 2. The full lines are
for their unsteady calculations; while, the dashed lines
are solutions assuming a quasi-steady gas phase. It can

Table 1. Parameter values for cases calculated, and times for evaporation to 0-45R,,

Conditions Time for evaporation to 0-45R,, (s)
T, Ry x 10* P, Variable Knuth Law and
Case (°K) (m) (atm) properties [5] 1/3rule  Williams [10]
1 600 25 1 1-51 1:53 1-58 164
2 1200 25 1 637 x 107! 678 640 6-33
3 2000 01 1 660 x 107* 7-48 620 596
4 2000 0-5 1 1465 x 1072 1-87 1-55 1-49
5 2000 2:5 1 412 x107! 467 3-87 373
6 600 2-5 5 1-78 1-74 1-80 193
7 600 25 10 195 1-89 195 212
8 2000 01 10 676 x 1074 7-08 6-06 6-18
9 2000 25 10 422 x 107! 442 378 3-86
10 1200 2:5 10 680 x 107! 628 6-50 6-80

per cent by mass evaporated). Figure 1 shows the
normalized drop radius squared as a function of time
scaled with the initial radius squared for the exact
variable property calculations. This time-scaling suc-
cessfully eliminates the dependence on initial radius;
for, Cases 3, 4 and 5 lie on a single curve. Clearly
demonstrated is the characteristic monotonic increase
in B, the negative of the slope of these curves, as has
been found in numerous experiments. The initial low

1 H L ol i 1 1 )
o] 4 8 12 i6 20 24 28 32
(0 ¥R,  s/m°

FiG. 1. Transient response of droplet radius-
squared: Ry =25x10"*m. (At T, = 2000°K,
Ry =01, 05, 25x10"*m for P, =1atm and

Ry, =01,25x10"*m for P, = 10atm.)

7, s

F1G. 2. Transient response of a methyl alcohol
droplet—after reference [3].

be seen that the unsteady results bear no resemblance
to those obtained in the present study, and also no
resemblance to their own quasi-steady gas phase
results. We conclude that the numerical solution pro-
cedure used by Kotake and Okazaki was in error, and
suggest that their results be discarded.

Figure 3 shows temperature profiles for Case 3. The
time required for R to decrease to 0-45R, was
660 x 10™*s, so the profiles depicted span most of the
droplet life. An interesting feature of these graphs is
the “blowing™ effect seen in the gas phase. To first
order, the vapor-side heat-transfer conductance varies
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FiG.3. Transient temperature distributions: T, =
2000°K, P, = 10atm, Ry = 0-1 x 10" *m.

inversely with R(t); furthermore, as the liquid ap-
proaches the wet-bulb temperature, the rate of conduc-
tion into the droplet (—k;8T/dr"|,) decreases. Thus,
the evaporative flux increases according to the surface
energy balance, equation (11), from 3-53kg/m*s at
1% 107%s to 873kg/m?s at 6 x 10™*s. The resulting
increase in v, ,=m"/p, reduces the temperature
gradient 8T/0r " |,, as clearly observed. Figure 4 shows
normalized gas phase mass fractions m;/m, , also for
Case 3. Again the effect of blowing in reducing the
gradient omy/dr* |, is clearly in evidence.

rt= riR

FiG. 4. Transient mass species distributions:
T, = 2000°K, P, = 10atm, R, = 0-1 x 10~ *m.

We now turn to the results of our investigation of
reference states for the evaluation of properties. We
note first that the mean square deviations of the
evaporation times for the ten cases reported in Table 1
are (a) Knuth: 9-25 per cent, (b) 1/3 rule: 6:28 per cent,
and (c) Law and Williams: 8-58 per cent. The evap-
oration times reported in Table 1 are related to
integral averages of evaporation rate over 90 per cent
of the droplet life. Added insight is obtained from Figs.
5 and 6, where a dimensional evaporation rate is plotted
as a function of time for Cases 1 and 3 respectively. It is
seen that the deviations of the reference property
solutions are greatest in the central period of droplet
life where the evaporation rates are highest.

A number of other reference schemes were investi-
gated but were less successful than those reported in
detail here. For example, in scheme B the 1/3 factor
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F1G. 5. Comparisons of reference property schemes with
exact solutions: T, = 2000°K, P, = 1 atm, Ry =01 x 107 *m.
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Fi1G. 6. Comparisons of reference property schemes with
exact solutions: T, = 600°K, P, = 1 atm, Ry = 2:5 x 10™*m.

was replaced by 1/2; i.e. the mean film values of tem-
perature and concentration, but the results were in-
ferior. Also T, = T,+1/3(T,— T,) was used in the Law
and Williams scheme with inferior results. In an attempt
to obtain a really simple scheme pure air properties
were used at various temperatures; with T, = T, this
scheme worked surprisingly well, but was generally
inferior to the three schemes reported here. Finally,
check calculations were performed assuming a well-
stirred model for the liquid phase (by letting k; — o0);
no substantive changes to the observations made above
were noted. Thus, we recommend Scheme B, the 1/3
rule, for general use.

CONCLUSIONS

1. The transient evaporation of single droplets into
an infinite stagnant gas is independent of initial size
provided time is scaled with respect to the initial radius-
squared.

2. The evaporative process becomes quasi-steatly,
with (R/R,)* = (R¥/R,)* —Bt/R%, as suggested by ex-
periment; thus, the results of Kotake and Okazaki are
presumed erroneous and should be discarded.



3. As quasi-steady evaporation is approached, the 3
effects of blowing in reducing the normalized tempera-
ture and species gradients in the vapor at the droplet
surface are enhanced.

4. For purposes of engineering calculations, the most

appropriate reference state for evaluation of properties 5.

is a simple 1/3 rule wherein the reference temperature
and species mass fraction are, respectively

6

T =T+13(T.—-T)
my, = my s+ 1/30my —my ) 7.
8
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EVAPORATION D'UNE GOUTTELETTE: EFFETS DE LA
PERIODE TRANSITOIRE ET DES PROPRIETES VARIABLES

Résumé—On présente une étude numérique des effets de la période transitoire et des propriétés variables
sur Pévaporation d'une gouttelette unique dans un gaz infini au repos. Des exemples de calculs sont
présentés pour des gouttelettes d'octane initialement & 300K avec Ry = 0,1-0,5-25. 10~ *m s’évaporant
dans P'air 4 des températures et des pressions respectivement dans les domaines 600-2000K et 1-10atm.
On trouve que la dimension initiale R, n'intervient plus dans le probléme lorsque P'échelle de temps
est rapportée 4 R} et que le processus dévaporation devient quasi-stationnaire lorsque (RRo)* =
(R¢ Rq)® — BtR3, comme le suggére 'expérience. Les comparaisons des solutions utilisant des combinaisons
variées de propriétés de référence avec celles A propriétés variables montrent que le meilleur accord
s'obtient en utilisant une loi simple 1,3 dans laquelle les propriétés sont évaluées & T, = T, +(T,— T,)* et
my,, = my -+ (my . —m)>. Les effets de mise en mémoire temporaire des espéces massiques, de I'énergie,
etc. et des variations radiales de pression dans la phase vapeur se sont avérés négligeables, la premiére
évolution transitoire étant seulement diie aux effets de chauffage sensibles dans la gouttelette et aux
variations qui 8’y rattachent des forces actives du c6té vapeur.

TROPFENVERDAMPFUNG: DER EINFLUSS VON INSTATIONAREN
UND VERANDERLICHEN STOFFEIGENSCHAFTEN

Zusammenfassung—FEs wird eine rechnerische Untersuchung der Einfliisse von instationdren und
verdnderlichen Stoffeigenschaften auf die Verdampfung eines einzelnen Tropfens in ein unbegrenztes
ruhendes Gas vorgelegt. Es wird ein Beispiel gerechnet fiir Oktan-Tropfen, die bei einer Anfangstemperatur
von 300K mit R, = 0,1; 0.5; 2,5 x 10" *m in Luft verdampfen, die im Temperatur- und Druckbereich
von 600 und 2000K sowie 1 bzw. 10atm vorliegt. Es wurde festgestelit, daf der Anfangsdurchmesser R,
eliminiert wird durch den ZeitmaBstab unter Beriicksichtigung von R} und daB, wie das Experiment
zeigt, der VerdampfungsprozeB quasistationdr wird mit

(RRE) = (R§Ro)* — PtRE.

Der Vergleich ¢iner Ldsung, die sich bei verschiedenen Bezugsstoffeigenschaften ergeben hat, mit einer,
die fiir verinderliche Stoffeigenschaften erhalten wurde, zeigt, daB sich die beste Ubereinstimmung
ergibt, wenn eine einfache 1/3 verwendet wird, wobei die Stoffeigenschaften bei der Temperatur
T, = T, +(T,~1;)/3 und dem Massenanteil m, , = m, ;+(m;,,—m, ,)/3 berechnet werden. Des EinfluB
der zeitlichen Speicherung von Massengrofen. Energie usw. sowie von radialen Druckschwankungen
in der Dampfphase erweist sich als vernachléssigbar. Das anfinglich instationére Verhalten beruht allein
aufdem EinfluB der filhlbaren Wirme im Tropfen und damit verkniipften Verdnderungen in den treibenden
Kriften der Dampfseite.

HUCNAPEHME KAIHEJIb. BJIMSAHHWE MNMEPEXOAHBIX IMPOLIECCOB
N TIEPEMEHHBIX CBONICTB

Annotaumst — [IpeacTaBneHo HcceqoBaHHe (Y4HCIIEHHRIM METOIOM) BIIMSHUSA NIEPEXOAHBIX [IPOLECCOB
M MEPEMEHHBIX CBOHCTB Ha HCIIAPEHHE eAHHUYHOM Karum B OecKOHEUHBIM HEMOABMXHEBIA ras. JaHbl
IpHMEPLI PacyYeTa JUIA KAMNE/Ib OKTAaHa ¢ HavaJibho# remnepatypoit B 300°K 1 R, paeunim 0,1; 0,5;
2,5 x 10™! u, KOTOpblE HCOAPANMCH B BO3AYX NPH Temnepatype or 600 no 2000°K u nasnesus or
1 no 10 atm. Haligeno, yTo Havansuel#l pazMep MOXHO PACCYHTATE H3 3a71a4H O BPEMEHY HCTTaDEHHS.
Tlpu (R/ Rp)? = (Ro*/ Ro)? — Bt/ Ro?, KaK MOACKA3BIBAET SKCIIEPHMEHT, IPOLECC HCHAPEHHSA CTAHOBHTCA
KBa3uCTauHOHAPHbIM, CpaBHEHHE PEIICHHH, B KOTOPBIX HCIONB3YIOTCS Ppa3liMYHbIE HCXOIOHBIE
CBOMCTBa, C pelIEHHSAMH C  HEPEMEHHBIMH CBOHCTBAMHM IOKa3biBaeT, MTO HaMJIy4luee COrjacue
nocruraerct NpA 1, =T+ (T, —T)/3 n my .= m s+ (my . — my )3

BriHsiHue BPEMEHHOrO HAKOIUIEHHS MAaCChi, JHEPTHH W T, J. ¥ PaaiajibHbIX U3MEHEHMI JaB/ICHHA B
maposoit daie oxasbisaercs npeHebpexumo ManpiM. HeCTalHOHaPDHOCTE BOIHUMKAET HCKIIIOYH TENBHO
H3-33 3HAYMTENBHBIX TENAOBLIX 3B(PEeXTOB BHYTPH KAIUIH M CBA3AHHBIX C HUMH H3MEHEHHH B ABHXY-

LFX CHTIAX CO CTOPOHBI napa.



